CHAPTER 1

Basic Considerations

1.1 Conservation of mass - Mass - density

Newton's second law - Momentum - velocity
The first law of thermodynamics - internal energy - temperature
1.2 a) density $=$ mass $/$ volume $=M / L^{3}$
b) pressure $=$ force/area $=F / L^{2}=M L / T^{2} L^{2}=M / L T^{2}$
c) power $=$ force \times velocity $=F \times L / T=M L / T^{2} \times L / T=M L^{2} / T^{3}$
d) energy $=$ force \times distance $=M L / T^{2} \times L=M L^{2} / T^{2}$
e) mass flux $=\rho A V=M / L^{3} \times L^{2} \times L T=M / T$
f) flow rate $=A V=L^{2} \times L / T=L^{3} / T$
1.3 a) density $=\frac{M}{L^{3}} \frac{F T^{2} / L}{L^{3}}=F T^{2} / L^{4}$
b) pressure $=F / L^{2}$
c) power $=F \times$ velocity $=F \times L / T=F L / T$
d) energy $=F \times L=F L$
e) mass flux $=\frac{M}{T}=\frac{F T^{2} / L}{T}=F T / L$
f) flow rate $=A V=L^{2} \times L / T=L^{3} / T$
1.4 (C) $m=F / a$ or $\mathrm{kg}=\mathrm{N} / \mathrm{m} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{s}^{2} / \mathrm{m}$.
1.5 (B) $\quad[\mu]=[\tau / d u / d y]=\left(F / L^{2}\right) /(L / T) / L=F \cdot T / L^{2}$.
1.6
a) $L=[C] T^{2}$.
$\therefore[C]=L / T^{2}$
b) $F=[C] M$.
$\therefore[C]=F / M=M L / T^{2} M=L / T^{2}$
c) $L^{3} / T=[C] L^{2} L^{2 / 3} . \quad \therefore[C]=L^{3} / T \cdot L^{2} \cdot L^{2 / 3}=L^{1 / 3} T$

Note: the slope S_{0} has no dimensions.
a) $\mathrm{m}=[C] \mathrm{s}^{2}$. $\quad \therefore[C]=\mathrm{m} / \mathrm{s}^{2}$
b) $\mathrm{N}=[C] \mathrm{kg}$. $\quad \therefore[C]=\mathrm{N} / \mathrm{kg}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} \cdot \mathrm{~kg}=\mathrm{m} / \mathrm{s}^{2}$
c) $\mathrm{m}^{3} / \mathrm{s}=[C] \mathrm{m}^{2} \mathrm{~m}^{2 / 3} . \therefore[C]=\mathrm{m}^{3} / \mathrm{s} \cdot \mathrm{m}^{2} \cdot \mathrm{~m}^{2 / 3}=\mathrm{m}^{1 / 3} / \mathrm{s}$
1.8 a) pressure: $\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} / \mathrm{m}^{2}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}^{2}$
b) energy: $\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} \times \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
c) power: $\mathrm{N} \cdot \mathrm{m} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$
d) viscosity: $\mathrm{N} \cdot \mathrm{s} / \mathrm{m}^{2}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}} \cdot \mathrm{~s} \frac{1}{\mathrm{~m}^{2}}=\mathrm{kg} / \mathrm{m} \cdot \mathrm{s}$
e) heat flux: $\mathrm{J} / \mathrm{s}=\frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{s}}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$
f) specific heat: $\frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}=\frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{kg} \cdot \mathrm{K}}=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}} \cdot \frac{\mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}}=\mathrm{m}^{2} / \mathrm{K} \cdot \mathrm{s}^{2}$
$1.9 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}+c \frac{\mathrm{~m}}{\mathrm{~s}}+k \mathrm{~m}=f$. Since all terms must have the same dimensions (units) we require:

$$
[c]=\mathrm{kg} / \mathrm{s},[k]=\mathrm{kg} / \mathrm{s}^{2}=\mathrm{N} \cdot \mathrm{~s}^{2} / \mathrm{m} \cdot \mathrm{~s}^{2}=\mathrm{N} / \mathrm{m},[f]=\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=\mathrm{N} .
$$

Note: we could express the units on c as $[c]=\mathrm{kg} / \mathrm{s}=\mathrm{N} \cdot \mathrm{s}^{2} / \mathrm{m} \cdot \mathrm{s}=\mathrm{N} \cdot \mathrm{s} / \mathrm{m}$
1.10
a) 250 kN
b) 572 GPa
c) 42 nPa
d) $17.6 \mathrm{~cm}^{3}$
e) $1.2 \mathrm{~cm}^{2}$
f) $76 \mathrm{~mm}^{3}$
1.11
a) $1.25 \times 10^{8} \mathrm{~N}$
b) $3.21 \times 10^{-5} \mathrm{~s}$
c) $6.7 \times 10^{8} \mathrm{~Pa}$
d) $5.6 \times 10^{-12} \mathrm{~m}^{3}$
e) $5.2 \times 10^{-2} \mathrm{~m}^{2}$
f) $7.8 \times 10^{9} \mathrm{~m}^{3}$
1.12 (A) $2.36 \times 10^{-8}=23.6 \times 10^{-9}=23.6 \mathrm{nPa}$.
$1.13 \quad \lambda=0.225 \frac{0.06854 \mathrm{~m}}{0.00194 \rho \times 3.281^{2} d^{2}}=0.738 \frac{\mathrm{~m}}{\rho d^{2}}$
where m is in slugs, ρ in slug/ ft^{3} and d in feet. We used the conversions in the front cover.
1.14 a) $20 \mathrm{~cm} / \mathrm{hr}=\frac{20}{100} / 3600=5.555 \times 10^{-5} \mathrm{~m} / \mathrm{s} \frac{20}{100} / 3600=5.555 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
b) $2000 \mathrm{rev} / \mathrm{min}=2000 \times 2 \pi / 60=209.4 \mathrm{rad} / \mathrm{s}$
c) $50 \mathrm{Hp}=50 \times 745.7=37285 \mathrm{~W}$
d) $100 \mathrm{ft}^{3} / \mathrm{min}=100 \times 0.02832 / 60=0.0472 \mathrm{~m}^{3} / \mathrm{s}$
e) $2000 \mathrm{kN} / \mathrm{cm}^{2}=2 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2} \times 100^{2} \mathrm{~cm}^{2} / \mathrm{m}^{2}=2 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
f) $4 \mathrm{slug} / \mathrm{min}=4 \times 14.59 / 60=0.9727 \mathrm{~kg} / \mathrm{s}$
g) $500 \mathrm{~g} / \mathrm{L}=500 \times 10^{-3} \mathrm{~kg} / 10^{-3} \mathrm{~m}^{3}=500 \mathrm{~kg} / \mathrm{m}^{3}$
h) $500 \mathrm{kWh}=500 \times 1000 \times 3600=1.8 \times 10^{9} \mathrm{~J}$
1.15 a) $F=m a=10 \times 40=\underline{400 \mathrm{~N}}$.
b) $F-W=m a . \quad \therefore F=10 \times 40+10 \times 9.81=\underline{498.1 \mathrm{~N}}$.
c) $F-W \sin 30^{\circ}=m a . \quad \therefore F=10 \times 40+9.81 \times 0.5=\underline{449 \mathrm{~N}}$.
1.16 (C) The mass is the same on earth and the moon: $\tau=\mu\left|\frac{d u}{d r}\right|=\mu[4(8 r)]=32 \mu r$.
1.17 The mass is the same on the earth and the moon:

$$
m=\frac{60}{32.2}=1.863 . \quad \therefore W_{\text {moon }}=1.863 \times 5.4=\underline{10.06 \mathrm{lb}}
$$

1.18 (C) $\quad F_{\text {shear }}=F \sin \theta=4200 \sin 30^{\circ}=2100 \mathrm{~N}$.

$$
\tau=\frac{F_{\text {shear }}}{A}=\frac{2100}{250 \times 10^{-4}}=84 \mathrm{kPa}
$$

1.19
a) $\lambda=.225 \frac{\mathrm{~m}}{\rho d^{2}}=.225 \frac{4.8 \times 10^{-26}}{.184 \times\left(3.7 \times 10^{-10}\right)^{2}}=.43 \times 10^{-6} \mathrm{~m}$ or $\underline{0.00043 \mathrm{~mm}}$
b) $\lambda=.225 \frac{\mathrm{~m}}{\rho d^{2}}=.225 \frac{4.8 \times 10^{-26}}{.00103 \times\left(3.7 \times 10^{-10}\right)^{2}}=7.7 \times 10^{-5} \mathrm{~m}$ or $\underline{0.077 \mathrm{~mm}}$
c) $\lambda=.225 \frac{\mathrm{~m}}{\rho d^{2}}=.225 \frac{4.8 \times 10^{-26}}{.00002 \times\left(3.7 \times 10^{-10}\right)^{2}}=.0039 \mathrm{~m}$ or $\underline{3.9 \mathrm{~mm}}$
1.20 Use the values from Table B. 3 in the Appendix.
a) $52.3+101.3=\underline{153.6 \mathrm{kPa}}$.
b) $52.3+89.85=142.2 \mathrm{kPa}$.
c) $52.3+54.4=106.7 \mathrm{kPa}$ (use a straight-line interpolation).
d) $52.3+26.49=78.8 \mathrm{kPa}$.
e) $52.3+1.196=\underline{53.5 \mathrm{kPa}}$.
1.21
a) $101-31=\underline{70 \mathrm{kPa} \text { abs }}$.
b) $760-\frac{31}{101} \times 760=\underline{527 \mathrm{~mm} \text { of } \mathrm{Hg} \text { abs }}$.
c) $14.7-\frac{31}{101} \times 14.7=\underline{10.2} \mathrm{psia}$.
d) $34-\frac{31}{101} \times 34=\underline{23.6 \mathrm{ft} \mathrm{of} \mathrm{H}} \underline{\underline{\mathrm{O}} \mathrm{Obs}}$.
e) $30-\frac{31}{101} \times 30=\underline{20.8 \mathrm{in} \text {. of } \mathrm{Hg} \text { abs }}$.
$1.22 p=p_{o} \mathrm{e}^{-g 7 / R T}=101 \mathrm{e}^{-9.81 \times 4000 / 287 \times(15+273)}=62.8 \mathrm{kPa}$
From Table B.3, at $4000 \mathrm{~m}: p=61.6 \mathrm{kPa}$. The percent error is

$$
\% \text { error }=\frac{62.8-61.6}{61.6} \times 100=\underline{1.95 \%} .
$$

1.23 a) $p=973+\frac{22,560-20,000}{25,000-20,000}(785-973)=\underline{877 \mathrm{psf}}$

$$
T=-12.3+\frac{22,560-20,000}{25,000-20,000}(-30.1+12.3)=\underline{-21.4^{\circ} \mathrm{F}}
$$

b) $p=973+.512(785-973)+\frac{.512}{2}(-.488)(628-2 \times 785+973)=\underline{873 \mathrm{psf}}$
$T=-12.3+.512(-30.1+12.3)+\frac{.512}{2}(-.488)(-48+2 \times 30.1-12.3)=\underline{-21.4^{\circ} \mathrm{F}}$
Note: The results in (b) are more accurate than the results in (a). When we use a linear interpolation, we lose significant digits in the result.
$1.24 T=-48+\frac{33,000-30,000}{35,000-30,000}(-65.8+48)=\underline{-59^{\circ} \mathrm{F}}$ or $(-59-32) \frac{5}{9}=\underline{-50.6^{\circ} \mathrm{C}}$

1.25 (B)

$1.26 p=\frac{F_{n}}{A}=\frac{26.5 \cos 42^{\circ}}{152 \times 10^{-4}}=1296 \mathrm{MN} / \mathrm{m}^{2}=\underline{1296 \mathrm{MPa}}$.
$\left.\begin{array}{c}F_{\mathrm{n}}=(120000) \times .2 \times 10^{-4}=2.4 \mathrm{~N} \\ F_{\mathrm{t}}=20 \times .2 \times 10^{-4}=.0004 \mathrm{~N}\end{array}\right\} F=\sqrt{F_{n}^{2}+F_{t}^{2}}=\underline{2.400 \mathrm{~N}}$.

$$
\theta=\tan ^{-1} \frac{.0004}{2.4}=\underline{0095^{\circ}}
$$

$1.28 \quad \rho=\frac{m}{\forall}=\frac{0.2}{180 / 1728}=\underline{1.92 \mathrm{slug} / \mathrm{ft}^{3}} . \quad \tau=\rho \mathrm{g}=1.92 \times 32.2=\underline{61.8 \mathrm{lb} / \mathrm{ft}^{3}}$.
1.29

$$
\begin{gathered}
\rho=1000-(T-4)^{2} / 180=1000-(70-4)^{2} / 180=\underline{976 \mathrm{~kg} / \mathrm{m}^{3}} \\
\gamma=9800-(T-4)^{2} / 18=9800-(70-4)^{2} / 180=\underline{9560 \mathrm{~N} / \mathrm{m}^{3}} \\
\% \text { error for } \rho=\frac{976-978}{978} \times 100=-.20 \% \\
\% \text { error for } \gamma=\frac{9560-978 \times 9.81}{978 \times 9.81} \times 100=\underline{-.36 \%}
\end{gathered}
$$

1.30

$$
\begin{gathered}
S=13.6-.0024 T=13.6-.0024 \times 50=13.48 \\
\% \text { error }=\frac{13.48-13.6}{13.6} \times 100=\underline{-.88 \%}
\end{gathered}
$$

1.31
a) $m=\frac{W}{g}=\frac{\gamma \forall}{g}=\frac{12400 \times 500 \times 10^{-6}}{9.81}=\underline{0.632 \mathrm{~kg}}$
b) $m=\frac{12400 \times 500 \times 10^{-6}}{9.77}=\underline{0.635 \mathrm{~kg}}$
c) $m=\frac{12400 \times 500 \times 10^{-6}}{9.83}=\underline{0.631 \mathrm{~kg}}$
$1.32 S=\frac{\rho}{\rho_{\text {water }}}=\frac{m / \forall}{\rho_{\text {water }}} . \quad 1.2=\frac{10 / \forall}{1.94} . \quad \therefore \forall=\underline{4.30 \mathrm{ft}^{3}}$
1.33
(D) $\quad \rho_{\text {water }}=1000-\frac{(T-4)^{2}}{180}=1000-\frac{(80-4)^{2}}{180}=968 \mathrm{~kg} / \mathrm{m}^{3}$
$1.34 \quad \tau=\mu\left|\frac{d u}{d r}\right|=1.92 \times 10^{-5}\left[\frac{30(2 \times 1 / 12)}{(1 / 12)^{2}}\right]=\underline{0.014 \mathrm{lb} / \mathrm{ft}^{2}}$
$1.35 T=$ force \times moment arm $=\tau 2 \pi R L \times R=\mu\left|\frac{d u}{d r}\right| 2 \pi R^{2} L=\mu\left(\frac{0.4}{R^{2}}+1000\right) 2 \pi R^{2} L$.

$$
\therefore \mu=\frac{T}{\left(\frac{0.4}{R^{2}}+1000\right) 2 \pi R^{2} L}=\frac{0.0026}{\left(\frac{0.4}{12}+1000\right) 2 \pi \times .01^{2} \times 0.2}=\underline{0.414 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}}
$$

1.36 Use Eq.1.5.8: $T=\frac{2 \pi R^{3} \omega L \mu}{h}=\frac{2 \pi \times(.5 / 12)^{3} \times \frac{2000 \times 2 \pi}{60} \times 4 \times .006}{.01 / 12}=\underline{2.74 \mathrm{ft}-\mathrm{lb}}$.

$$
H p=\frac{T \omega}{550}=\frac{2.74 \times 209.4}{550}=\underline{1.04 \mathrm{Hp}}
$$

$1.37 \quad F_{\text {belt }}=\mu \frac{d u}{d y} A=1.31 \times 10^{-3} \frac{10}{.002}(.6 \times 4)=15.7 \mathrm{~N}$.

$$
H p=\frac{F \times V}{746}=\frac{15.7 \times 10}{746}=\underline{0.210} \mathrm{Hp}
$$

1.38 Assume a linear velocity so $\frac{d u}{d y}=\frac{r \omega}{h}$. Due to the area element shown, $d T=d F \times r=\tau d A \times r=\mu \frac{d u}{d y} 2 \pi r d r \times r$.

$$
T=\int_{0}^{R} \frac{\mu \omega 2 \pi}{h} r^{3} d r=\frac{2 \pi \mu \omega}{h} \frac{R^{4}}{4}=\frac{\pi \times 2.36 \times 10^{-5} \times \frac{400 \times 2 \pi}{60} \times(3 / 12)^{4}}{2 \times .08 / 12}=\underline{91 \times 10^{-5} \mathrm{ft}-\mathrm{lb}}
$$

$1.39 \quad\left[\frac{30(2 \times 1 / 12)}{(1 / 12)^{2}}\right] \tau=\mu\left|\frac{d u}{d r}\right|=\mu\left[32 r / r_{0}^{2}\right]=32 \mu r / r_{0}^{2} . \quad \therefore \tau_{r=0}=0$,
$\tau_{r=0.25}=32 \times 1 \times 10^{-3} \times \frac{.25 / 100}{(.5 / 100)^{2}}=\underline{3.2 \mathrm{~Pa}}, \quad \tau_{r=0.5}=32 \times 1 \times 10^{-3} \times \frac{.5 / 100}{(.5 / 100)^{2}}=\underline{6.4 \mathrm{~Pa}}$
$1.40 \quad$ (A) $\quad \tau=\mu\left|\frac{d u}{d r}\right|=\mu[10 \times 5000 r]=10^{-3} \times 10 \times 5000 \times 0.02=1 \mathrm{~Pa}$.
1.41 The velocity at a radius r is $r \omega$ The shear stress is $\tau=\mu \frac{\Delta u}{\Delta y}$. The torque is $d T=\tau r d A$ on a differential element. We have

$$
T=\int \tau r d A=\int_{0}^{0.08} \mu \frac{r \omega}{0.0002} 2 \pi r d x, \quad \omega=\frac{2000 \times 2 \pi}{60}=209.4 \mathrm{rad} / \mathrm{s}
$$

where x is measured along the rotating surface. From the geometry $x=\sqrt{2} r$, so that $T=\int_{0}^{0.08} 0.1 \frac{209.4 \times x / \sqrt{2}}{0.0002} 2 \pi \frac{x}{\sqrt{2}} d x=329000 \int_{0}^{0.08} x^{2} d x=\frac{329000}{3}\left(0.08^{3}\right)=\underline{56.1 \mathrm{~N} \cdot \mathrm{~m}}$
1.42 If $\tau=\mu \frac{d u}{d y}=$ cons't and $\mu=A e^{B / T}=A e^{B y / K}=A e^{C y}$, then

$$
A e^{C y} \frac{d u}{d y}=\text { cons't. } \quad \therefore \frac{d u}{d y}=D e^{-C y}
$$

Finally, $\int_{0}^{u} d u=\int_{0}^{y} D e^{-C y} d y$ or $u(y)=-\left.\frac{D}{C} e^{-C y}\right|_{0} ^{y}=\underline{E\left(\mathrm{e}^{-C y}-1\right)}$
where A, B, C, D, E, and K are constants.

$$
\left.\begin{array}{c}
\mu=A e^{B / T} .001=A e^{B / 293} \\
.000357=A e^{B / 353}
\end{array}\right\} \quad \therefore A=2.334 \times 10^{-6}, B=1776
$$

$\mu_{40}=2.334 \times 10^{-6} e^{1776 / 313}=\underline{6.80 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}}$
$m=\rho \forall$. Then $d m=\rho d \forall+\forall d \rho$. Assume mass to be constant in a volume subjected to a pressure increase; then $d m=0 . \therefore \rho d \forall=-V d \rho$, or $\frac{d \forall}{\forall}=-\frac{d \rho}{\rho}$.
$1.45 B=-\frac{\forall \Delta p}{\Delta \forall}=2200 \mathrm{MPa} . \therefore \Delta \forall=\frac{-\forall \Delta p}{B}=\frac{-2 \times 10}{2200}=\underline{-0.00909 \mathrm{~m}^{3}}$ or $-\underline{9090 \mathrm{~cm}^{3}}$
1.46 Use $c=1450 \mathrm{~m} / \mathrm{s} . L=c \Delta t=1450 \times 0.62=\underline{899 \mathrm{~m}}$
$1.47 \Delta p=-\frac{B \Delta \forall}{W}=-2100 \frac{-1.3}{20}=\underline{136.5 \mathrm{MPa}}$
a) $c=\sqrt{327,000 \times 144 / 1.93}=\underline{4670 \mathrm{fps}}$
b) $c=\sqrt{327,000 \times 144 / 1.93}=\underline{4940 \mathrm{fps}}$
c) $c=\sqrt{308,000 \times 144 / 1.87}=\underline{4870 \mathrm{fps}}$

$$
\begin{align*}
& \Delta \forall=3.8 \times 10^{-4} \times-20 \times 1=.0076 \mathrm{~m}^{3} . \\
& \Delta p=-B \frac{\Delta \forall}{\forall}=-2270 \frac{-.0076}{1}=\underline{17.25 \mathrm{MPa}}
\end{align*}
$$

$1.50 \quad p=\frac{2 \sigma}{R}=\frac{2 \times .0741}{5 \times 10^{-6}}=2.96 \times 10^{4} \mathrm{~Pa}$ or $\underline{29.6 \mathrm{kPa}} . \quad$ Bubbles: $p=4 \sigma / R=\underline{59.3 \mathrm{kPa}}$
1.51 Use Table B.1: $\sigma=0.00504 \mathrm{lb} / \mathrm{ft} . \therefore p=\frac{4 \sigma}{R}=\frac{4 \times .00504}{1 / 32 \times 12}=7.74 \mathrm{psf}$ or $\underline{0.0538 \mathrm{psi}}$
1.52 See Example 1.4: $\quad h=\frac{4 \sigma \cos \beta}{\rho g D}=\frac{4 \times 0.0736 \times 0.866}{1000 \times 9.81 \times 0.0002}=0.130 \mathrm{~m}$.
1.53 (D) $h=\frac{4 \sigma \cos \beta}{\rho g D}=\frac{4 \times 0.0736 \times 1}{1000 \times 9.81 \times 10 \times 10^{-6}}=3 \mathrm{~m}$ or 300 cm .
1.54 See Example 1.4: $h=\frac{4 \sigma \cos \beta}{\rho g D}=\frac{4 \times 0.032 \cos 130^{\circ}}{1.94 \times 13.6 \times 32.2 \times 0.8 / 12}$

$$
=-0.00145 \mathrm{ft} \text { or }-0.0174 \mathrm{in}
$$

1.55 force up $=\sigma \times L \times 2 \cos \beta=$ force down $=\rho g h t L . \quad \therefore h=\frac{2 \sigma \cos \beta}{\rho g t}$.
1.56 Draw a free-body diagram:

The force must balance:

$$
\begin{gathered}
W=2 \sigma L \text { or }\left(\frac{\pi d^{2}}{4} L\right) \rho g=2 \sigma L . \\
\therefore d=\sqrt{\frac{8 \sigma}{\pi \rho g}}
\end{gathered}
$$

1.57 From the free-body diagram in No. 1.47, a force balance yields:

Is $\frac{\pi d^{2}}{4} \rho g<2 \sigma$? $\quad \frac{\pi(.004)^{2}}{4} 7850 \times 9.81<2 \times .0741$

$$
0.968<0.1482 \quad \therefore \text { No }
$$

1.58 Each surface tension force $=\sigma \times \pi D$. There is a force on the outside and one on the inside of the ring.
$\therefore F=\underline{2 \sigma \pi D}$ neglecting the weight of the ring.

1.59

From the infinitesimal free-body shown:

$$
\sigma d \ell \cos \theta=\rho g h \alpha x d x . \quad \cos \theta=\frac{d x}{d \ell}
$$

$$
\therefore h=\frac{\sigma d \ell d \nless d \ell}{\rho g \alpha x d x}=\frac{\sigma}{\rho g \alpha x}
$$

We assumed small α so that the element thickness is αx.
1.60 The absolute pressure is $p=-80+92=12 \mathrm{kPa}$. At $50^{\circ} \mathrm{C}$ water has a vapor pressure of 12.2 kPa ; so $T=50^{\circ} \mathrm{C}$ is a maximum temperature. The water would "boil" above this temperature.
1.61 The engineer knew that water boils near the vapor pressure. At $82^{\circ} \mathrm{C}$ the vapor pressure from Table B. 1 is 50.8 (by interpolation). From Table B.3, the elevation that has a pressure of 50.8 kPa is interpolated to be $\underline{5500 \mathrm{~m}}$.
1.62 At $40^{\circ} \mathrm{C}$ the vapor pressure from Table B. 1 is 7.4 kPa . This would be the minimum pressure that could be obtained since the water would vaporize below this pressure.
1.63 The absolute pressure is $14.5-11.5=3.0 \mathrm{psia}$. If bubbles were observed to form at 3.0 psia (this is boiling), the temperature from Table B. 1 is interpolated, using vapor pressure, to be $\underline{141^{\circ} \mathrm{F}}$.
1.64 The inlet pressure to a pump cannot be less than 0 kPa absolute. Assuming atmospheric pressure to be 100 kPa , we have

$$
10000+100=600 \mathrm{x} . \quad \therefore x=\underline{16.83 \mathrm{~km}} .
$$

1.65 (C)
$\rho=\frac{p}{R T}=\frac{101.3}{0.287 \times(273+15)}=\underline{1.226 \mathrm{~kg} / \mathrm{m}^{3}} . \quad \gamma=1.226 \times 9.81=\underline{12.03 \mathrm{~N} / \mathrm{m}^{3}}$
$\rho_{\text {in }}=\frac{p}{R T}=\frac{101.3}{0.287 \times(15+273)}=1.226 \mathrm{~kg} / \mathrm{m}^{3} . \quad \rho_{\text {out }}=\frac{85}{0.287 \times 248}=\underline{1.19 \mathrm{~kg} / \mathrm{m}^{3}}$.
Yes. The heavier air outside enters at the bottom and the lighter air inside exits at the top. A circulation is set up and the air moves from the outside in and the inside out: infiltration. This is the "chimney" effect.
$\rho=\frac{p}{R T}=\frac{750 \times 44}{1716 \times 470}=\underline{0.1339 \text { slug } / \mathrm{ft}^{3}} . \quad m=\rho \nvdash=0.1339 \times 15=\underline{2.01 \text { slug } .}$
1.70
(C) $\quad m=\frac{p \forall}{R T}=\frac{800 \times 4}{0.1886 \times(10+273)}=59.95 \mathrm{~kg}$
$W=\frac{p}{R T} \forall g=\frac{100}{0.287 \times 293} \times(10 \times 20 \times 4) \times 9.81=\underline{9333 \mathrm{~N}}$.
1.71 Assume that the steel belts and tire rigidity result in a constant volume so that m_{1} $=m_{2}$:

$$
\begin{aligned}
& \forall_{1}=\forall_{2} \text { or } \frac{m_{1} R T_{1}}{p_{1}}=\frac{m_{2} R T_{2}}{p_{2}} . \\
& \therefore p_{2}=p_{1} \frac{T_{2}}{T_{1}}=(35+14.7) \frac{150+460}{-10+460}=67.4 \text { psia or } 52.7 \text { psi gage. }
\end{aligned}
$$

1.72 The pressure holding up the mass is 100 kPa . Hence, using $p A=W$, we have

$$
100000 \times 1=m \times 9.81 . \quad \therefore m=10200 \mathrm{~kg} .
$$

Hence,

$$
m=\frac{p V}{R T}=\frac{100 \times 4 \pi r^{3} / 3}{0.287 \times 288}=10200 . \quad \therefore r=12.6 \mathrm{~m} \quad \text { or } \quad d=25.2 \mathrm{~m} .
$$

$1.73 \quad 0=\Delta K E+\Delta P E=\frac{1}{2} m V^{2}+m g(-10) . \quad \therefore V^{2}=20 \times 32.2 . \quad \therefore V=\underline{25.4 \mathrm{fps}}$.

$$
0=\frac{1}{2} m V^{2}+m g(-20) . \quad \therefore V^{2}=40 \times 32.2 . \quad \therefore V=35.9 \mathrm{fps} .
$$

$W_{1-2}=\Delta K E . \quad$ a) $200 \times 0=\frac{1}{2} \times 5\left(V_{f}^{2}-10^{2}\right) . \quad \therefore V_{f}=\underline{19.15 \mathrm{~m} / \mathrm{s}}$.
b) $\int_{0}^{10} 20 s d s=\frac{1}{2} \times 15\left(V_{f}^{2}-10^{2}\right)$.

$$
20 \times \frac{10^{2}}{2}=\frac{1}{2} \times 15\left(V_{f}^{2}-10^{2}\right) . \quad \therefore V_{f}=\underline{15.27 \mathrm{~m} / \mathrm{s}}
$$

c) $\int_{0}^{10} 200 \cos \frac{\pi s}{20} d s=\frac{1}{2} \times 15\left(V_{f}^{2}-10^{2}\right)$.

$$
\frac{20}{\pi} \times 200 \sin \frac{\pi}{2}=\frac{1}{2} \times 15\left(V_{f}^{2}-10^{2}\right) . \quad \therefore V_{f}=\underline{16.42 \mathrm{~m} / \mathrm{s}} .
$$

1.75

$$
E_{1}=E_{2} . \quad \frac{1}{2} \times 10 \times 40^{2}+0.2 \tilde{u}_{1}=0+\tilde{u}_{2} . \quad \therefore \tilde{u}_{2}-\tilde{u}_{1}=40000 .
$$

$\Delta \tilde{u}=c_{v} \Delta T . \quad \therefore \Delta T=\frac{40000}{717}=\underline{55.8^{\circ} \mathrm{C}}$ where c_{v} comes from Table B.4.
The following shows that the units check:

$$
\left[\frac{m_{\mathrm{car}} \times V^{2}}{m_{\mathrm{air}} c}\right]=\frac{\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)}=\frac{\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}{\mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}^{2}}=\frac{\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot{ }^{\circ} \mathrm{C}}{\left(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \mathrm{m} \cdot \mathrm{~s}^{2}}={ }^{\circ} \mathrm{C}
$$

where we used $\mathrm{N}=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$ from Newton's $2^{\text {nd }}$ law.
1.76

$$
\begin{aligned}
& E_{2}=E_{1} \cdot \frac{1}{2} m V^{2}=m_{\mathrm{H}_{2} \mathrm{O}} c \Delta T \\
& \frac{1}{2} \times 1500 \times\left(\frac{100 \times 1000}{3600}\right)^{2}=1000 \times 2000 \times 10^{-6} \times 4180 \Delta T . \quad \therefore \Delta T=\underline{69.2^{\circ} \mathrm{C}} .
\end{aligned}
$$

We used $c=4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ from Table B.5. (See Problem 1.75 for a units check.)
$m_{f} h_{f}=m_{\text {water }} c \Delta T . \quad 0.2 \times 40000=100 \times 4.18 \Delta T . \quad \therefore \Delta T=\underline{19.1^{\circ} \mathrm{C}}$.
The specific heat c was found in Table B.5. Note: We used kJ on the left and kJ on the right.
1.78.
(B) $\Delta E_{\text {ice }}=\Delta E_{\text {water }} . \quad m_{\text {ice }} \times 320=m_{\text {water }} \times c_{\text {water }} \Delta T$.
$5 \times\left(40 \times 10^{-6}\right) \times 1000 \times 320=\left(2 \times 10^{-3}\right) \times 1000 \times 4.18 \Delta T . \quad \therefore \Delta T=\underline{7.66^{\circ} \mathrm{C}}$.
We assumed the density of ice to be equal to that of water, namely 1000 $\mathrm{kg} / \mathrm{m}^{3}$. Ice is actually slightly lighter than water, but it is not necessary for such accuracy in this problem.
1.79.
$W=\int p d \forall=\int \frac{m R T}{\forall} d \forall=m R T \int \frac{d \forall}{\forall}=m R T \ln \frac{\forall_{2}}{\forall_{1}}=m R T \ln \frac{p_{2}}{p_{1}}$
since, for the $T=$ const process, $p_{1} \forall_{1}=p_{2} \forall_{2}$. Finally,

$$
W_{1-2}=\frac{4}{32.2} \times 1716 \times 530 \ln \frac{1}{2}=-78,310 \mathrm{ft}-\mathrm{lb}
$$

The $1^{\text {st }}$ law states that

$$
Q-W=\Delta \tilde{u}=m c_{v} \Delta T=0 . \quad \therefore Q=W=-78,310 \mathrm{ft}-\mathrm{lb} \text { or }-101 \mathrm{Btu} .
$$

1.80 If the volume is fixed the reversible work is zero since the boundary does not move. Also, since $\forall=\frac{m R T}{p}, \frac{T_{1}}{p_{1}}=\frac{T_{2}}{p_{2}}$ so the temperature doubles if the pressure doubles. Hence, using Table B. 4 and Eq. 1.7.17,
a) $Q=m c_{v} \Delta T=\frac{200 \times 2}{0.287 \times 293}(1.004-0.287)(2 \times 293-293)=\underline{999 \mathrm{~kJ}}$
b) $Q=m c_{v} \Delta T=\frac{200 \times 2}{0.287 \times 373}(1.004-0.287)(2 \times 373-373)=\underline{999 \mathrm{~kJ}}$
c) $Q=m c_{v} \Delta T=\frac{200 \times 2}{0.287 \times 473}(1.004-0.287)(2 \times 473-473)=\underline{999 \mathrm{~kJ}}$
$1.81 W=\int p d F=p\left(\vdash_{2}-\vdash_{1}\right)$. If $p=$ const, $\frac{T_{1}}{\forall_{1}}=\frac{T_{2}}{\forall_{2}}$ so if $T_{2}=2 T_{1}$,
then $\forall_{2}=2 \forall_{1}$ and $W=p\left(2 \bigvee_{1}-\forall_{1}\right)=p \forall_{1}=m R T_{1}$.
a) $W=2 \times 0.287 \times 333=\underline{191 \mathrm{~kJ}}$
b) $W=2 \times 0.287 \times 423=\underline{243 \mathrm{~kJ}}$
c) $W=2 \times 0.287 \times 473=\underline{272 \mathrm{~kJ}}$
1.82
$c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 318}=357 \mathrm{~m} / \mathrm{s} . L=c \Delta t=357 \times 8.32=\underline{2970 \mathrm{~m}}$.
$T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{k-1 / k}=(20+273)\left(\frac{500}{5000}\right)^{0.4 / 1.4}=151.8 \mathrm{~K}$ or $\underline{-121.2^{\circ} \mathrm{C}}$
1.83 We assume an isentropic process for the maximum pressure:
$p_{2}=p_{1}\left(\frac{T_{2}}{T_{1}}\right)^{k / k-1}=(150+100)\left(\frac{423}{293}\right)^{1.4 / 0.4}=904 \mathrm{kPa}$ abs or 804 kPa gage.
Note: We assumed $p_{\text {atm }}=100 \mathrm{kPa}$ since it was not given. Also, a measured pressure is a gage pressure.
$1.84 \quad p_{2}=p_{1}\left(\frac{T_{2}}{T_{1}}\right)^{k / k-1}=100\left(\frac{473}{293}\right)^{1.4 / 0.4}=\underline{534 \mathrm{kPa} \mathrm{abs}}$.
$w=-\Delta u=-c_{v}\left(T_{2}-T_{1}\right)=-(1.004-0.287)(473-293)=-129 \mathrm{~kJ} / \mathrm{kg}$.
We used Eq. 1.7.17 for c_{v}.
1.85 a) $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 293}=343.1 \mathrm{~m} / \mathrm{s}$
b) $c=\sqrt{k R T}=\sqrt{1.4 \times 188.9 \times 293}=\underline{266.9 \mathrm{~m} / \mathrm{s}}$
c) $c=\sqrt{k R T}=\sqrt{1.4 \times 296.8 \times 293}=\underline{348.9 \mathrm{~m} / \mathrm{s}}$
d) $c=\sqrt{k R T}=\sqrt{1.4 \times 4124 \times 293}=\underline{1301 \mathrm{~m} / \mathrm{s}}$
e) $c=\sqrt{k R T}=\sqrt{1.4 \times 461.5 \times 293}=\underline{424.1 \mathrm{~m} / \mathrm{s}}$

Note: We must use the units on R to be $\mathrm{J} / \mathrm{kgK}$ in the above equations.
1.86 (D) For this high-frequency wave, $c=\sqrt{R T}=\sqrt{287 \times 323}=304 \mathrm{~m} / \mathrm{s}$.
1.87 At 10000 m the speed of sound $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 223}=299 \mathrm{~m} / \mathrm{s}$.

At sea level, $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 288}=340 \mathrm{~m} / \mathrm{s}$.
$\%$ decrease $=\frac{340-299}{340} \times 100=\underline{12.06 \%}$.
1.88 a) $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 253}=319 \mathrm{~m} / \mathrm{s} . L=c \Delta t=319 \times 8.32=\underline{2654 \mathrm{~m}}$.
b) $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 293}=343 \mathrm{~m} / \mathrm{s} . L=c \Delta t=343 \times 8.32=\underline{2854 \mathrm{~m}}$.
c) $c=\sqrt{k R T}=\sqrt{1.4 \times 287 \times 318}=357 \mathrm{~m} / \mathrm{s} . L=c \Delta t=357 \times 8.32=\underline{2970 \mathrm{~m}}$.

